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The problem 

To find approximate optical properties in a medium using a finite set 
of measurements in a computationally efficient manner
A finite-difference method can be used to simulate radiative transfer
The method is used to find optical properties (an inverse problem)
Advantages compared to other imaging modalities: 

Infrared light is non-ionizing (it can be used for continuous monitoring)
Faster image acquisition (compared to MRI for example)

Optical imaging systems can be made portable                    
(> 1T magnets not needed like in MRI) 
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When is radiation non-ionizing? 

Radiation is non-ionizing if the energy of its photons is lower 
than the energy needed to detach electrons from atoms.
Energy of a photon is given by:

Therefore, radiation above a certain frequency will be ionizing. This 
frequency is about 1016 Hz (ultraviolet light), higher than the 
frequency of infrared light (1012 to 1014 Hz). 

E = hν
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The radiative transfer equation 

Infrared light is used because its absorption is minimal in tissue 
compared to other wavelengths of light
Therefore the radiative transport equation is applicable. 
Under more assumptions applicable for tissue, the radiative 
transport equation can be simplified to a diffusion equation
The equation can be derived from energy conservation on a ray of
light traveling though tissue
This equation is the most exact approximation to radiative transfer 
but a Monte Carlo method modeling actual photons yields better 
solutions for most real applications.  
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The diffusion approximation 

Also referred to as the delta-Eddington approximation:

∂U
∂t =

∂
∂x D ∂U

∂x + ∂
∂y D ∂U

∂y − cµaU + S
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Example of the forward problem: 

Diffusion coefficient and initial condition:
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Example of the forward problem: 

Diffusion of light:
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Example of the forward problem: 

Readout of 16-1 receivers:
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Perturbation methods 

A simple approach to solving the inverse optical diffusion 
problem. 
The relation between measurements and estimated optical 
properties can be written as follows:

A Taylor expansion about      is:

The difference between actual and estimated optical properties is:

Mp = F[θe]

θe

M = F[θe] + F θe(θ − θe) + F (θ − θe)
T (θ − θe) + ...

∆M =M− F[θe] = F θe(θ − θe) + ...
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Perturbation methods 

A linear estimate of this difference is:

Where:

A solution to the inverse problem is then:

Where the result is used to find the optical properties:

∆M ≈ J[θe]∆θ

J[θe] = F [θe]

∆θ = θ − θe

∆θ ≈ J−1[θe]∆M

θ = ∆θ + θe
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Comments 

Linear approximation is “good” only if 
Finding the inverse of the Jacobian is hard (full and ill-conditioned) 
The previous issue can be partially resolved by minimizing the 
following function:

Jacobian can also be made more diagonally dominant using a 
preconditioning matrix and then solving an equivalent problem that 
takes less computational effort
This method can be used recursively 

θe ≈ θ

J[θe]∆θ −∆M
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The GIIR method 

GIIR stands for gradient-based iterative image reconstruction. 
The GIIR Method has the following steps: 

Step 1: find an initial guess for the optical properties
Step 2: using a numerical approximation to the diffusion equation, 
find the gradient of a cost function with respect to a finite amount of 
optical parameters
Step 3: use a gradient based method to find a new guess for the 
optical properties
“Rinse and repeat”
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Flow diagram of the GIIR method 

Flow diagram from [2].
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Comments 

Common scheme to solve diffusion equation is implicit finite 
differences 
Solving implicit scheme takes, per time step,            computations    
Option normally used to find gradients of a numerical scheme is 
numerical differentiation. 
Besides having truncation and cancellation errors, it takes     
computations per outer iteration
Both can actually be done in          computations
This drops the total computation cost from             to       per outer 
iteration 

O(N2)

O(N2)

O(N)O(N2)

O(N)
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Finite difference schemes 

Finite difference schemes can be used to discretize the diffusion 
equation  
This is done using finite differences 
Finite differences are useful in rectangular domains with structured 
grids   
The boundary condition was set to 0 for all schemes
There are 3 main ways of doing this in 2 dimensions 
These 3 methods have different stability criteria and grid dependent 
errors
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Explicit method 

In this method, the future light intensity is determined from the same 
node at a previous time step and its closest 4 adjacent nodes (done 
in            per iteration):

This scheme is stable under the following condition:

The error for this scheme is the following: 

O(N)

Un+1 = BUn

∆t < ∆2

4(maxDs)

O(∆t), O(∆2)
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Implicit method 

In this method, the future light intensity is determined from the same 
node at a previous time step and its closest 4 adjacent nodes at the 
same time step (done in             per iteration):

This scheme is unconditionally stable

The error for this scheme is the following: 

O(N2)

AUn+1 = Un

O(∆t), O(∆2)
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Alternating directions implicit (ADI) method 

In this method, the future light intensity is determined implicitly in 
one direction, and explicitly in the other. This is done in one ‘half’ a 
time step, then the directions are reversed by rearranging the node 
numbering (done in           per iteration): 

This scheme is unconditionally stable

Surprisingly, the error for this scheme is the following: 

O(N)

AUn+1/2 = BUn

AUn+1reordered = BU
n+1/2
reordered

O(∆t2), O(∆2)
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Numerical differentiation 

Finite difference approximations of any accuracy can be 
obtained from the Taylor series expansion of the equation:

Rearranging using the first term yields a forward difference:

One can also do the Taylor series approximation about        , which 
yields a backward difference: 

f(x+ h) = f(x) + f (x)h+
f (x)

2!
h2 + ...

−h
f (x) =

f(x+ h)− f(x)
h

f (x) =
f(x)− f(x− h)

h
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Effect of    on error of forward difference h
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Automatic differentiation (AD) 

Also referred to as algorithmic differentiation   
Can be used to find derivatives of program outputs for fixed inputs    
For some functions this can be done with the same computational 
cost as evaluating the function itself 
There are 2 types: forward mode or backward mode (adjoint)
AD is not automatic symbolic differentiation or numerical 
differentiation
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AD example 

We’ll evaluate the gradient of the following function:

Its value and gradient at the given point are: 

y = x1x2 + x1x2sin(x2) + x2x
2
3

(∇y @ x = [2 0 3]T )

∇y(x) = [0 11 0]T
y(x) = 0
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AD forward mode example

Program trace                      Forward mode trace 

v−1 = x1 = 2
v−2 = x2 = 0
v−3 = x3 = 3

v1 = v−1v−2 = 0
v2 = v1sin(v−2) = 0
v3 = v−2v2−3 = 0

v4 = y = v1 + v2 + v3 = 0

∇v−1 = [1 0 0]T
∇v−2 = [0 1 0]T
∇v−3 = [0 0 1]T

∇v1 = v−1∇v−2 +∇v−1v−2 = [0 2 0]T
∇v2 = v1cos(v−2)∇v−2 +∇v1sin(v−2) = [0 0 0]T
∇v3 = 2v−2v−3∇v−3 +∇v−2v2−3 = [0 9 0]T

∇v4 = ∇y = ∇v1 +∇v2 +∇v3 = [0 11 0]T
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AD backward mode example 
Instead of taking a gradient for all input variables, we could take the 
derivative of each trace variable with the output variable 
This is done working backwards from    , to each of the input 
variables   
If we want to find                       (adjoint) from a trace with              , 
we apply the chain rule:

We can also do this in 2 steps (called accumulation):

y

v1 ≡ ∂y/∂v1 y = v4

y = v1 + v2 + v3
v2 = v1sin(v2)

v1 = v4 + v2sin(v−2)

∂y
∂v1

= dy
dv4

∂v4
∂v1

+ dy
dv2

∂v2
∂v1

v1 = v4
v1 = v1 + v2sin(v−2)
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AD backward mode example

Backward mode trace (using values from last trace and accumulation) 

v4 = y = 1

y = v1 + v2 + v3 = 0
v3 = v4 = 1
v2 = v4 = 1
v1 = v4 = 1

v3 = v−2v2−3 = 0
v−2 = v3v2−3 = 9
v−3 = v32v−2v−3 = 0

v2 = v1sin(v−2) = 0
v1 = v1 + v2sin(v−2) = 1
v−2 = v−2 + v2v1cos(v−2) = 9

v1 = v−1v−2 = 0
v−2 = v−2 + v1v−1 = 11
v−1 = v1v−2 = 0
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Comments 

Amount of computations is 3 times higher if derivative is calculated 
using forward mode
For functions of the form                      , forward mode derivation 
takes           computations
In reverse mode, it takes only         computations    
The opposite is true if the function is of the form  
For general functions                          where a Jacobian is 
calculated, the two methods can be combined
Doing it in the least amount of time referred to as the optimal 
Jacobian accumulation problem

O(np)
f : Rn ⇒ R

f : R⇒ Rm

F : Rn ⇒ Rm

O(p)
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AD of numerical scheme

For one view, the sensitivity with respect to light intensity at a 
node and given time step is as follows:

For all nodes:

Differentiating the update rule:

dφ
dUn

s
=

r∈S
dφ

dUn+1
r

∂Un+1
r

∂Un
s
+ ∂φ

∂Un
s

∂φ
∂Un

s
= (Y ns − Uns ) if s ∈M and n ∈ T

dφ
dUn =

∂Un+1

∂Un

T dφ
dUn+1 +

∂φ
∂Un

∂Un+1

∂Un = A−1B

dφ
dUn = B

T (A−1)T dφ
dUn+1 +

∂φ
∂Un
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AD of numerical scheme

For the final sensitivity:

For all optical properties being optimized:

Differentiating the update rule:

dφ
dθp

=
n r∈S

dφ
dUn

r

∂Un
r

∂θp

dφ
dθ =

n

∂Un

∂θ

T
dφ
dUn

dA
dθp
Un+1 + A∂Un+1

∂θp
= dB

dθp
Un

∂Un+1

∂θp
= A−1 dB

dθp
Un − dA

dθp
Un+1 = A−1Xp

∂Un+1

∂θ
= A−1X
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AD of numerical scheme

The final expression for the sensitivity is:

This equation accumulates the contributions of:

With:

dφ
dθ =

n
XT (A−1) dφdUn

dφ
dUn = B

T (A−1)T dφ
dUn+1 +

∂φ
∂Un

dφ
dUN = ∂φ

∂UN
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AD software 

A program can be differentiated using AD by transforming the code 
The most obvious one is source transformation
The function is sent to a program that outputs the derivative of the 
function
This method incurs the least overhead    
Another method is operator overloading  
In this method, language features are used that allow the 
programmer to use the same operation like + for different purposes 
depending on the types or classes being manipulated 
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AD software 

ADiMAT
(only forward mode)

TAC++ 
(20000 €license!) 

Source 
transformation

ADMATFADBAD++ 
RAD

Operator 
overloading 

MATLABC++Type

Programming language
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Conjugate gradient descent  

Effective method for solving large sparse matrix problems
This is equivalent to computing the minimum of a quadratic from
It can be shown that conjugate gradient descent is faster than 
steepest gradient descent in most cases 
The above results can be used to find the minimum for other 
nonlinear forms if their gradients can be computed
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Quadratic form  

A quadratic form is the following:

If     is square, symmetric and positive definite,         is minimized by 
the solution to the related matrix problem:

f(x) = 1
2x

TAx− bTx+ c

A

xTAx > 0 for all x = 0

f(x)

Ax = b



Medical Imaging presentation 3512/29/2010

Steepest gradient descent  

The residual is the following:

To minimize        , we can move in the direction of the residual to a 
new point:

Then ‘rinse and repeat’ until a norm of the residual is below a certain 
tolerance, usually chosen as a fraction of the same norm applied to 
the original residual:

r(i) = b−Ax(i) = A(x− x(i)) = −Ae(i) = −f (x(i))

f(x)

x(i+1) = x(i) + αr(i)

||r(i)|| < ε||r(0)||
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Steepest gradient descent  

The value of     should be a value that minimizes     along a line 

with direction                            . A value where its derivative should 
be zero:

Using the chain rule:

And:

α

r(i) = −f (x(i))
d
dαf(x(i) + αr(i)) = 0

f

d
dαf(x(i+1)) = f (x(i+1))

T d
dαx(i) = r

T
(i+1)r(i)

α =
rT(i)r(i)

rT
(i)
Ar(i)
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Steepest gradient descent

Diagram from [8].
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Conjugate gradient descent  

Conjugate gradient uses directions that are conjugate with 

respect to A:

The solution can be expressed in mutually orthogonal basis:

α =
pT(i)b(i)

pT
(i)
Ap(i)

x = n
i=1 αipi

uTAv = 0

b = Ax = n
i=1 αiApi

pTk b = p
T
kAx =

n
i=1 αip

T
kApi = αkp

T
kApk
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Nonlinear conjugate gradient descent  

The conjugate gradient descent method consists of 2 steps per 
iteration: line minimization and finding a new search direction.
For nonlinear minimization problems the same techniques can be 
used but convergence is not guaranteed. 
For line search, the golden section search can be used: 

This is repeated until a bound for a local minimum is found. Then 
quadratic interpolation is used to find the minimum. 
For a new search direction, the Polak-Riberie scheme can be used. 
Other methods that are used in other implementations of GIIR are
quasi-Newton methods.

µ(i+1) = µi + 1.618∆µ
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Results 

Implemented explicit, implicit and ADI finite differences for the 
problem setup in [2]
The implicit method used a programmed version of bi-CGStab that 
takes advantage of A being pentadiagonal, making it faster than 
MATLAB’s implementation for matrix sizes higher than ~400
The explicit method has smallest discretization error per 
computation time 
However, since the noise is assumed higher than the discretization 
error, ADI should be chosen    
The AD method in [1] was implemented in MATLAB for an implicit 
scheme and tested using numerical differentiation   
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Results 

Test optical property distribution and negative of the gradient using 
numerical differentiation and the AD method outlined in [1]:
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Results 
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Results 
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Thank you for your time.
Questions?


