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1 Introduction

The finite element method (FEM) or finite element analysis (FEA) is a method
for solving partial differential equations (PDEs) using trial function methods
with point and piecewise discritization. It is used in cases where an analyt-
ical solution is either difficult or impossible to obtain with any other known
method. Most practical problems in engineering due to their geometric and
material complexity require FEA for a satisfactory analysis. Nevertheless, this
approach introduces both approximation and round-off error to the solution.
This whitepaper assumes some basic knowledge of FEA. The finite element
formulation is based on [1].

2 Finite element formulation

This formulation is limited to 2D stress problems. The finite element method
uses piecewise discretization and approximation of relations between displace-
ment and force applied in each element. This is given by an element stiffness
matrix that by definition relates the displacements and the forces applied to
each element:

KeUe = Fe (1)

The discretization is done by a suitable meshing algorithm depending on
the element type used. The element stiffness matrices are then combined based
on the mapping between the element and domain displacements into a global
stiffness matrix:

KgUg = Fg (2)

This is referred to as assembly. The system is then solved using a suitable
linear solver algorithm. The solution can be carried out faster than a prob-
lem with a random matrix of the same size since the global stiffness matrix is
symmetric and positive definite. It also usually has a small bandwidth.

The element stiffness matrix is derived as follows using the total energy of
the element. The energy of an element with an applied force is as follows:

X =
1

2

∫

Ve

εTσdV −UT
e Fe (3)

In the elastic region of a material, the stress is related to the strain by a
matrix as follows:

ε = BUe (4)

The matrix is obtained from the displacement in the element that depends
on the nodal displacements, interpolated using shape functions (together being
trial functions). The stress is related to the strain in the following way:

σ = Dε (5)
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It depends on the material properties and the kind of loading, for this for-
mulation we are assuming plane stress. The equations used in 2D plane stress
are derived in [2]. Combining the above equations yields:

X =
1

2
UT

e

(
∫

Ve

BTDBdV

)

Ue −UT
e Fe (6)

Notice that the displacements are fixed with respect to the integral and can
therefore be taken outside of it. Using the Rayleigh-Ritz variational approach,
the total energy can be extremized to yield the force as a function of the nodal
displacements with the following theorems [1]:

∂

∂ω

(

1

2
ωTQω

)

= Qω (7)

∂

∂ω

(

ωTP

)

= P (8)

Using the above theorems, extremizing the energy and equating to zero
yields:

0 =

∫

Ve

BTDBdV − Fe (9)

Notice that in reality the energy should be zero but since we are using trial
functions the energy equation will not be equal to zero. However, extremizing
it to find the minimum produces an element stiffness matrix that produces the
lowest energy possible with the variational approach.

Therefore:

Ke =

∫

Ve

BTDBdV (10)

In 2D plane stress with quadrilateral elements and plate thickness t, the
equation can be simplified to:

Ke = t

∫ 1

−1

∫ 1

−1

BTDB|J|dηdξ (11)

Where |J | is the determinant of the Jacobian of the mapping between local
and global coordinates. Similar equations can be derived for other element
types. For more information refer to [1] and [3].

3 A MATLAB implementation

The MATLAB program described here illustrates some implementation details
for the finite element formulation described in the last section. This program
was checked first by checking the displacements in a simple bar in tension prob-
lem, then with ANSYS by solving some 2D linear plane stress problems, with
identical meshes. The program was used to compute the stress field generated
by two adjacent holes in an infinite plate.
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3.1 Reason for language choice

Since MATLAB is a program specifically designed to work with matrices (the
name stands for MATrix LABoratory), it is a good choice for FEA work. It is
also easier to learn than other lower level languages like C/C++ and FORTRAN.
As long as the global stiffness matrix is not too large, the difference in execution
speed between MATLAB and lower level languages is not critical. MATLAB is
slower because it is an interpreted language that uses recompiled functions. To
write a program that is faster therefore means that the code should be as concise
as possible and if and for loops should be avoided (since they are interpreted
for every loop). This is called vectorization; using matrix operations instead of
for loops and if statements to speed up MATLAB code. Particular examples of
this approach are described in the following sections. This implementation is
based on [4].

3.2 FEA functions and classes

The MATLAB program was divided into three main functions getmesh(), fep()
and fepp(). The first function is used to read node and connectivity files.
The second function implements the actual processing and fepp() calculates
the nodal stresses (the extra p stands for post-processing; usually referred to
as any computation done after solving for the displacements using the global
stiffness matrix).
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3.3 FEA algorithms

The main processing algorithm is given as follows:

%GENERATE K MATRIX

%Get quadrature points in 2D (first number is order of entries in k^e)

[qW,qP] = quadrature(gaussDeg,gaussType,2);

%Generate ke matrices and put directly into K matrix

for e = 1:nElements

%k quadrature loop

for q = 1:size(qW,1)

%Calculate derivatives of shape functions

[N,dNdxi] = lagrange_basis(elemType,qP(q,:));

elemNodes = p(t(e,:)’,:);

J = (elemNodes’*dNdxi)’;

invJt = inv(J’);

dNdx = dNdxi*invJt;

%Make B matrix for element

B = zeros(3,2*nPerElem);

B(1,1:2:(2*nPerElem-1)) = dNdx(:,1)’;

B(2,2:2:2*nPerElem ) = dNdx(:,2)’;

B(3,1:2:(2*nPerElem-1)) = dNdx(:,2)’;

B(3,2:2:2*nPerElem ) = dNdx(:,1)’;

%Generate K matrix

%Global location vector

gL(2*(1:nPerElem)-1) = 2.*t(e,:)-1;

gL(2*(1:nPerElem)) = 2.*t(e,:);

K(gL,gL) = K(gL,gL) + B’*D*B*qW(q)*det(J);

end

end

The main processing algorithm uses two for loops to generate the element
stiffness matrix for each element and for each quadrature point. To save com-
putation time and space, the global stiffness matrix is assembled directly using
a ’global location vector’ that for 2D problems and the nodal arrangement used
in Ug is:

gL(2*(1:nPerElem)-1) = 2.*t(e,:)-1

gL(2*(1:nPerElem)) = 2.*t(e,:)
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Instead of having another for loop inside two for loops, the shape function
derivatives in terms of intrinsic coordinates where calculated using the following
expression:

∂N(ξ, η)

∂x,y
=

∂N(ξ, η)

∂ξ, η
(JT)−1 (12)

Instead of the usual expression that only produces shape function derivatives
in terms of intrinsic coordinates for one node:

∂Ni(ξ, η)

∂x,y
= J−1 ∂Ni(ξ, η)

∂ξ, η
(13)

This is an example of vectorization. This is done in [4] but in the wrong way
since the actual Jacobian is used instead of its transpose. The shape functions
and integration points were obtained from MATLAB functions given by [4]. The
shape functions for the 8 noded quadrilateral were added for this implementa-
tion. Their derivatives with respect to the local coordinates were calculated
using MATLAB’s symbolic toolbox. The system is solved using the deceptively
simple line of code:

U = K\F;

As mentioned before, MATLAB can and does use various solution algorithms
based on matrix properties such as bandwidth, symmetry and sparseness that
allow for a smaller computation time. For more information consult [5].

The equivalent nodal loads from the applied pressure were calculated using
the equivalent work principle to obtain consistent loading:

q =

∫

L

NP(x)dx (14)

This was done in MATLAB as follows:

%GENERATE EXTERNAL FORCE VECTORS

%Sort force nodes based on x value

[fbNxs,indices] = sort(p(forcebNodes,1));

%Calculate lengths between nodes

numfNs = length(forcebNodes);

ls = diff(fbNxs);

nodalForces = zeros(1,numfNs);

%Choose between linear or quadratic elements

switch elemType

case {’T3’,’Q4’}

%Calculate loads in nodes (consistent loading) adding forces

%from sides (linear case)

n = 2:(numfNs-1);

nodalForces(1) = ls(1)/2;

nodalForces(n) = (ls(n-1) + ls(n))/2;

nodalForces(numfNs) = ls(numfNs-1)/2;
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case {’T6’,’Q8’}

%Calculate loads in nodes (consistent loading) adding forces

%from sides (quadratic case)

n = 3:2:(numfNs-2);

nodalForces(1) = qholder(1, 1, ls);

nodalForces(2) = qholder(2, 1, ls);

nodalForces(n) = qholder(3, n-2, ls) + qholder(1, n, ls);

nodalForces(n+1) = qholder(2, n, ls);

nodalForces(numfNs) = qholder(3, numfNs-2, ls);

end

F(forcebNodes(indices)*2) = nodalForces.*sigma;

The use of the MATLAB functions sort() and diff() prevent the use of a
for loop. This is another example of vectorization. The qholder function was
written to make the code more readable. For example, qholder can contain the
expression used to obtain consistent loading for quadratic elements:

function result = qholder(type, n, ls)

%Function helps calculate distributed loads (/const pressure)

%for quadratic elements

switch type

case 1

result = (ls(n)+ls(n+1))./ls(n).*(ls(n)./3 - ls(n+1)./6);

case 2

result =

(ls(n)+ls(n+1)).*(ls(n)+ls(n+1)).*(ls(n)+ls(n+1))./6./ls(n)./ls(n+1);

case 3

result = (ls(n)+ls(n+1))./ls(n+1).*(ls(n+1)./3 - ls(n)./6);

end

The fixed boundary conditions were applied by changing the matrix size as
follows:

%APPLY BOUNDARY CONDITIONS

%Zero rows and columns on y component of fixed nodes in K matrix

%Zero leftmost node in x component to prevent free body motion in x axis

%Not needed for F vector since corresponding positions are already zero

[dummy,index] = min(p(fixedbNodes,1));

K(fixedbNodes(index)*2-1,:) = 0; K(:,fixedbNodes(index)*2-1) = 0;

K(fixedbNodes*2,:) = 0; K(:,fixedbNodes*2) = 0;

%Put ones in diagonals corresponding to fixed components of nodes

K(fixedbNodes(index)*2-1,fixedbNodes(index)*2-1) = 1;

K(fixedbNodes*2,fixedbNodes*2) = speye(length(fixedbNodes));

If one wants to check the analytic solution of a hole in an infinite plate with
an FEA solution of the same problem, the ratio between the width of the plate
and the hole diameter has to be high enough to approximate an infinite plate. If
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this is the case, the stress on the boundary of the plate will approach the stress
on the boundary of a plate without a hole. instead of checking for the stress at
the boundaries, the related displacements were used. This is because the error
of the calculated stress is usually higher than the calculated displacement. This
was implemented as follows:

%GET EDGE LOCATION VECTORS

%Tolerance used in boundary selection and y coordinate of boundaries

btol = 1e-4; edge1 = -1; edge2 = 1;

%Left edge

leftNodes = find(abs(p(:,1)-edge1) < btol);

%Right edge

rightNodes = find(abs(p(:,1)-edge2) < btol);

%Top edge

topNodes = find(abs(p(:,2)-edge1) < btol);

%Bottom edge

bottomNodes = find(abs(p(:,2)-edge2) < btol);

%Calculate max displacements

maxdy = sigma*2/E;

maxdx = -nu*maxdy;

%Compare with actual values

[leftNs,index] =

sort(p(leftNodes,2));

maxLeftDiff =

max(abs( (U(leftNodes(index)*2)-(leftNs+1)./2*maxdy)./maxdy ));

(Same for all other sides)

maxDiff = max([maxLeftDiff; maxRightDiff; maxTopDiff; maxBottomDiff]);

4 Meshing in MATLAB

4.1 Considerations in choosing a meshing algorithm

The quality of the mesh has to be adequate; if its not, among other problems, the
calculated Jacobian at a given quadrature point will produce values approaching
either machine epsilon or ceiling, giving the wrong displacements. The quality
of a mesh is usually measured by the skewness ratio of the element, the internal
angles of the element and the value of the determinant of the Jacobian. ANSYS
can produce triangular and quadrilateral meshes in a short amount of time.
It also provides warnings if the elements are not well shaped [6]. A meshing
algorithm implemented in MATLAB called DistMesh was found to produce
better quality elements than ANSYS.
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4.2 DistMesh

The meshing algorithm called DistMesh is implemented as a MATLAB function.
For more information refer to [7]. The algorithm uses the analogy of a triangle
mesh as a truss structure.

The algorithm starts placing nodes randomly with and average distance
between nodes of l0, or weighting the initially uniform probability distribution
with the inverse square of the element size function h(x, y) in a bounding box
with the shape to be meshed. The element size function is used to change the
distance between elements as a function of their position in the bounding box or
in the area to be meshed. Then the points used are the ones inside the area to
be meshed. This is determined by the distance function d(x, y) of the area to be
meshed. It is a function that provides the shortest distance from a point to the
boundary of the area to be meshed. The distance is positive if the point is inside
the area and negative otherwise. This equation can also be used as part of the
element size function. Then the nodes are connected to form a truss structure
using Delaunay triangulation. Afterwards the corresponding truss problem is
solved for equilibrium: the sum of the forces in each truss is minimized. The
force function used is a linear spring function with spring constant k equal to 1:

f(x, y) (15)

In that way the truss structure spreads out covering the area to be meshed. In
order for the nodes to spread far enough, the actual lo inputted in the algorithm’s
MATLAB function is multiplied by a scaling factor Fscale. A satisfactory value
for this factor was found by trial and error for 2D areas to be 1.2. If a node
goes outside the area to be meshed, the node is placed at the boundary of the
area. This is done also using the distance function to determine a normal force.
If the truss connected to the node is not perpendicular to the tangent of the
area boundary at that point, the net effect will be that a node that moves past
the area will start to move tangent to the area’s boundary.

The equation
F (p) = 0 (16)

is solved with the steepest (or gradient) descent method:

F (p) = 0 (17)

Which is equal to using an artificial time dependence and a forward Euler
method as used in the paper [7]:

p1 = pn + tF (p) (18)

For more information about the steepest descent method and the forward Euler
method consult [8]. This iteration is carried out until all trusses expand more
than ttol scaled with l0. Then the Delaunay algorithm is applied again and then
the forward Euler iteration. This is repeated until all movements are smaller
than dptol scaled with l0.
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Solving the equivalent truss problem for equilibrium and using the Delaunay
algorithm produces very uniform elements. It is actually superior in the shapes
tested compared to most other common algorithms [7]. Some disadvantages of
this method are its execution speed and the fact that a global minimum element
quality value cannot be guaranteed. However the method could produce high
quality meshes faster if another method is used to get an initial mesh and
then DistMesh is used only for mesh refinement. The method can also be
used to produce high quality quadrilateral elements as done in the LehrFEM
MATLAB function library, using this simple algorithm: generate a triangle
mesh using DistMesh, out of all possible quadrilaterals obtained by merging two
triangles find the one with the highest quality, merge the triangles corresponding
to that quadrilateral and repeat from step two until all triangles are merged into
quadrilaterals. Then split all quadrilaterals and any remaining triangle into 4
and 2 quadrilaterals respectively. Unfortunately, the whole LehrFEM library
including quadrilateral mesh generation is not available online. To obtain a copy
of the complete library contact Dr. Hiptmair at: hiptmair@sam.math.ethz.ch.
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