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Abstract

The purpose of this report is to explain the theory behind the Gradient-
based Iterative Image Reconstruction (GIIR) method and its application
in optical tomography. The method is also implemented in MATLAB.
Design issues related to the code and its performance are discussed.
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2 The problem

The problem those solution is discussed in this report and in [1] and [2] is to find
approximate optical properties in a medium using a finite set of measurements
in a computationally efficient manner. This is done by simulating radiative
transfer in the tissue and comparing it with measurements taken at the bound-
ary of the tissue area. The radiative transfer being simulated is with light in
the infrared range. The simulation and the measurements can be used to find
optical properties; an inverse problem.

Advantages compared to other imaging modalities:

• Infrared light is non-ionizing (it can be used for continuous monitoring)

• Faster image acquisition (compared to MRI for example)

• Optical imaging systems can be made portable (> 1T magnets not needed
like in MRI)

Radiation is non-ionizing if the energy of its photons is lower than the energy
needed to detach electrons from atoms normally found in living tissue. The
energy of a photon is given by:

E = hν (1)

Therefore, radiation above a certain frequency will be ionizing. This frequency
is about 1016 Hz (ultraviolet light), higher than the frequency of infrared light
(1012 to 1014 Hz).

3 Physics of optical difussion in tissue

Infrared light is used because its absorption is minimal in tissue compared to
other wavelengths of light, therefore the radiative transport equation (RTE) is
applicable. Under more assumptions applicable for tissue, the radiative trans-
port equation can be simplified to a diffusion equation. As shown below, this
equation can be derived from energy conservation on a ray of light traveling
though tissue. This equation can be solved to model radiative transfer but a
Monte Carlo method modeling actual photons yields better solutions for most
real applications. But with some approximations, the difussion approximation
to (RTE) can yield accurate results in less processing time. The following deriva-
tions are based on [3].

3.1 Radiative transfer equation

The radiative transfer equation describes quantitatively the conservation of en-
ergy of an ideal beam of light with an infinitesimal cross-section. The beam
losses energy by absorption and scattering, and gains energy from other beams
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and scatteing towards the beam. These processes are described at different co-
ordinates specified by using a position vector ~r, using a unit propagation vector
ŝ, and a time t. The equation is as follows:

∂L

∂tc
= −ŝ · ∇L− µTL+ µs

∫
4π

LPdΩ′ + S (2)

Where L = L(~r, ŝ, t) is the radiance defined as the energy flow per unit
normal area per unit solid angle per unit time, c is the speed of light in the
tissue, µT = µa + µs is the sum of the absorption and scattering coefficients.
P = P (ŝ′, ŝ) is defined as a phase function, since it describes the probability of
light with direction ŝ′ being scattered into a solid angle close to ŝ. S = S(~r, ŝ, t)
is another light source.

3.2 Diffusion approximation

We would like to simplify eq. (2) to an equation where one variable is diffused
thought the tissue. As explained below, this variable will be the fluence rate light
intensity, given by U = U(~r, t) =

∫
4π
L(~r, ŝ, t)dΩ. As seen from the integration,

the light intensity has the same units as L but it is only energy flow per unit
volume (since the integration was done over the whole solid angle). The diffusion
approximation to the radiative transfer equation, also referred to as the delta-
Eddington approximation, follows from the two approximations applicable to
living tissue:

1. The transport of radiance can be modelled by its first order spherical
harmonics

2. The fractional change in current density in one transport mean free path
(distance between scattering events) is much less than 1.

Where current density is defined as J = ~J(~r, t) =
∫
4π
ŝLdΩ. Applying the

first approximation to eq. (2) yields:

∂U

∂tc
= −∇ · J − µaU + S (3)

The second approximation can be written as the following equation:( l
c

)( 1
|J |

∂J

∂t

)
� 1 (4)

That can be rewritten as:∣∣∣ ∂J
∂tc

∣∣∣� (µa + µ′s)|J | (5)

Under this condition, J can be expressed as a Frick’s Law:

J = −D∇U (6)
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Figure 1: Original phantom
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Figure 2: Initial condition: an impulse function at source/receiver pair 1

The negative sign is included to indicate that diffusion of J happens along a
negative gradient. The final form of the equation in 2 dimensions is:

∂U

∂t
=

∂

∂x

(
D
∂U

∂x

)
+

∂

∂y

(
D
∂U

∂y

)
− cµaU + S (7)

With: D = 1
3(µa+µ′

s) and µ′s = (1 − g)µs. The value g is the scattering
anisotropy and it is equal to the average cosine of the scattering angle distribu-
tion. In the optimizations carried out in this report, only the cµa is optimized.
D is assumed constant and uniform.

Figures 1 to 7 show an example of the simulated forward problem using an
ADI scheme.
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Figure 3: Difussion of light intensity at 1 ns
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Figure 4: Difussion of light intensity at 2 ns
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Figure 5: Difussion of light intensity at 3 ns
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Figure 6: Difussion of light intensity at 4 ns
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Figure 7: Readings form source/receiver pairs 2 to 16. The x axis is the time
in ns and the y axis is the light intensity in W/cm2

4 Perturbation methods

A conceptually simple approach to solving the inverse optical diffusion problem
are perturbation methods. This approach solves a linearized inverse problem.
The relation between measurements and estimated optical properties can be
written as follows:

Mp = F[θe] (8)

A Taylor expansion about θe is:

M = F[θe] + F′θe(θ − θe) + F′′(θ − θe)T (θ − θe) + ... (9)

The difference between actual and estimated optical properties is:

∆M = M− F[θe] = F′θe(θ − θe) + ... (10)

A linear estimate of this difference is:

∆M ≈ J[θe]∆θ (11)

Where:
J[θe] = F′[θe]

and:
∆θ = θ − θe

A solution to the inverse problem is then:

∆θ ≈ J−1[θe]∆M (12)

Where the result is used to find the optical properties:

θ = ∆θ + θe (13)
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This linear approximation is good only if θe ≈ θ: the standard deviation
between the average and the predicted optical values from the measured values
is relatively low. Finding the inverse of the Jacobian in eq. (12) is hard since
it is full and ill-conditioned. The previous issue can be partially resolved by
minimizing the following function:

‖J[θe]∆θ −∆M‖ (14)

The Jacobian can also be made more diagonally dominant using a precondi-
tioning matrix and then solving an equivalent problem that takes less compu-
tational effort if the preconditioner is well designed. This method can also be
used recursively if the linear approximation is not applicable. But this requires
finding more than one Jacobian inverse like the one in eq. (12).

5 The GIIR method

GIIR stands for gradient-based iterative image reconstruction. The GIIR Method
has the following steps:

1. Find an initial guess for the optical properties

2. Using a numerical approximation to the diffusion equation, find the gradi-
ent of a cost function with respect to a finite amount of optical parameters

3. Use a gradient based method to find a new guess for the optical properties

4. Rinse and repeat

The cost function used in [1] and [2] also refered as the sensitivity is the
following:

φ =
1
2

∑
(Y ns − Uns )2 if s ∈M and n ∈ T (15)

Where M are the locations where the measurements were recorded, and T are
the times when measurements were taken. In [1] and [2], eq. (15) is used
together with Bayesian estimation to take into account the uncertainty for dif-
ferent measurement loactions and times. In this report, all maesurement uncer-
tanties are assumed equal. A common scheme to solve a diffusion equation is
implicit finite differences. Solving an implicit scheme takes, per time step, about
O(N2) computations. Here N is the numerical scheme’s matrix side length. A
method normally used to find gradients of a numerical scheme is numerical dif-
ferentiation. Besides having truncation and cancellation errors, it takes O(N2)
computations per outer iteration as shown in fig. Both can actually be done
in O(N) computations This drops the total computation cost from O(N2) to
O(N) per outer iteration
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6 Finite differences

Finite difference schemes can be used to discretize the diffusion equation. Finite
differences are useful in rectangular domains with structured grids. In all the
following results, a zero boundary condition is used. There are 4 commonly
used schemes in 2D. These 4 methods have different stability criteria and grid
dependent errors.

6.1 Estimating the stability and the error of numerical
schemes

To estimate the error, the discritization is carried out with higher order terms
and the order of the error corresponds to the order of those terms [4]. To
estimate stability, the Von Neumann or Fourier stability analysis is usually
used. In Fourier analysis, a recurrence relation is found for the error. Then the
error is assumed to be composed of a finite fourier series:

ε =
∑

eateikmx (16)

Then the error in some evaluation of the recurrence relation is:

εm = eateikmx (17)

Eq. 17 can be substituted back into the recurrence relation and the equation
can be rearranged to be equal to the amplification factor G:

G =
εn+1
j

εnj
(18)

This factor should be lower than 1 for all t. Notice that this analysis does not
take into account bounded ocillations. As shown below, the ADI scheme can
show bounded oscillations if the following condition is not true:

∆t <
∆2

2(maxDs)
(19)

Which corresponds to the explicit step in ADI done on 1 dimension.

6.2 Explicit

In this method, the future light intensity is determined from the same node at a
previous time step and its closest 4 adjacent nodes (done in O(N) per iteration):

Un+1 = BUn (20)

This scheme is stable under the following condition:

∆t <
∆2

4(maxDs)
(21)

The order of the time and grid errors for this scheme are the following: O(∆t),
O(∆2). Where ∆ is the distance between nodes in the x and y directions (the
grid used is structured and square).
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Figure 8: Numerical stencil used in the explicit scheme (from [5])

Figure 9: Numerical stencil used in the implicit scheme (from [5])

6.3 Implicit

In this method, the future light intensity is determined from the same node at a
previous time step and its closest 4 adjacent nodes at the same time step (done
in O(N) per iteration):

AUn+1 = Un (22)

This scheme is unconditionally stable. The order of the time and grid errors for
this scheme are the following: O(∆t), O(∆2).

6.4 Crank-Nicholson

Although Crank-Nicholson has a lower time error than implicit and explicit
methods, but it is computationaly expensive to use since it is of the form:

AUn+1 = BUn (23)

Where both matrices A and B are pentadiagonal. Therefore it will not be
considered in this report.

6.5 Alternating directions implicit

In this method, the future light intensity is determined implicitly in one direc-
tion, and explicitly in the other. This is done in one half a time step, then the
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directions are reversed by rearranging the node numbering:

AUn+1/2 = BUn (24)

AUn+1
reordered = BU

n+1/2
reordered (25)

This can be done in O(N) per iteration. Half a time step means one time
step but the ∆t being used is ∆t/2. This is shown in the equation by using
n+1/2 instead or n+1. As explained in [2], U is first row ordered, then col-
umn ordered, then row ordered and so on. The vector U is row ordered if
U with the same x values are enumerated first before increasing the y val-
ues (U = [ux1,y1, ux2,y1, ..., uxn,y1, ux1,y2, ux2,y2, ...]T ) and cloumn ordered if
U with the same y values are enumerated first before increasing the x val-
ues (U = [ux1,y1, ux1,y2, ..., ux1,yn, ux2,y1, ux2,y2, ...]T ). From now on, when the
half time step notation is used, the U is assumed to be ordered as needed
(U := Ureordered)

This scheme is unconditionally stable. However, as explained in the results,
the solution can be oscillatory on the first time steps. Surprisingly, the error for
this scheme is the following: O(∆t), O(∆2).

7 Differentiation methods

As mentioned before, one of the steps of the GIIR method requires the compu-
tation of the gradient of a numerical scheme. Below are the 3 methods used for
differentiation.

7.1 Symbolic differentiation

In this method, a program finds the derivative of a symbolic function that is
inputed in the program. This is done when the expression being inputed is too
complicated to differentiate manually. However, if the expression is like a com-
puter program (with if statments for example) and it requires many iterations,
the corresponding symbolic statement of the derivative will require too much
memory. Also note that the computed numbers are kept with infinite presicion
(meaning their representation will usually grow larger). Therefore this method
is not appropiate to find the gradient of the numerical scheme. MAPLE can
be used to differentiate symbolic statements. MATLAB can also do symbolic
differentiation by using a MAPLE library.

7.2 Numerical differentiation

Finite difference approximations of any accuracy can be obtained from the Tay-
lor series expansion of the equation:

f(x+ h) = f(x) + f
′
(x)h+

f
′′
(x)

2!
h2 + ... (26)
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Figure 10: Error of x2 evaluated at 1 using a forward difference with different
values of h

Rearranging using the first term yields a forward difference:

f
′
(x) =

f(x+ h)− f(x)
h

(27)

One can also do the Taylor series approximation about −h, which yields a
backward difference:

f
′
(x) =

f(x)− f(x− h)
h

(28)

As can be seen from Fig.10, the total error is dominated by the truncation error
and then by round-off error, leveling off at MATLAB’s machine epsilon value
as h is decreased. Finding the h value with the minimum error is nontrivial
if an analytic solution is not known. The problem is harder if the function is
mutivalued. Even if the total error was not a concern, to find the gradient of
a function each input variable has to be disturbed individually, therefore the
function or program should be run N times. Therefore the total computation
time is O(N2).

7.3 Automatic differentiation

Automatic differentiation (AD) is also referred to as algorithmic differentiation.
It can be used to find derivatives of program outputs if the input is given (if
the adjoint model as explained below is derived manually then an expression
for any input can be obtained). For some functions this can be done with the
same computational cost as evaluating the function itself. There are 2 types:
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forward mode or backward mode (adjoint). AD is similar but not equivalent
to automatic symbolic differentiation or numerical differentiation. An excellent
introduction to AD is [6]. When a program is writen, more variables than the
input and output variables are declared (either manually or by the compiler).
This increases memeory demands slightly but it increase the excecution speed of
the code. All variables being calculated in a running program will be refered to
as traces. For example, the following equation is evaluated to yield the answer
shown:

y = x1x2 + x1x2sin(x2) + x2x
2
3 (29)

yx=[2 0 3]T = 0 (30)

A trace that reduces the number of computations is the following:

v−1 = x1 = 2 (31)
v−2 = x2 = 0
v−3 = x3 = 3

v1 = v−1v−2 = 0
v2 = v1sin(v−2) = 0

v3 = v−2v
2
−3 = 0

v4 = y = v1 + v2 + v3 = 0

Using the product rule, while the trace variables are being evaluated, the
derivatives of the trace variables with respect to the input variables can be
evaluated using the previously evaluated trace derivatives:

∇v−1 = [1 0 0]T (32)
∇v−2 = [0 1 0]T

∇v−3 = [0 0 1]T

∇v1 = v−1∇v−2 +∇v−1v−2 = [0 2 0]T

∇v2 = v1cos(v−2)∇v−2 +∇v1sin(v−2) = [0 0 0]T

∇v3 = 2v−2v−3∇v−3 +∇v−2v
2
−3 = [0 9 0]T

∇v4 = ∇y = ∇v1 +∇v2 +∇v3 = [0 11 0]T

This is exactly like symbolic differentiation except that the intermediate
derivatives are being evaluated while the total derivative is obtained. This
decreases the amount of memory needed substantialy since the representation
of expressions for every trace is not being stored. This is referred to as forward
mode AD.

Instead of taking a gradient for all input variables, we could take the deriva-
tive of each trace variable with the output variable. This is done working back-
wards from y, to each of the input variables. If we want to find v1 ≡ ∂y/∂v1
(called an adjoint) from a trace with y = v4 , we apply the multivariable chain
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rule:

y = v1 + v2 + v3 (33)
v2 = v1sin(v2) (34)

v1 = v4 + v2sin(v−2) (35)

Instead of finding which functions contain v1 before running the program to
obtain the complete adjoint, the terms of eq. (35) can be added individually as
the program is running:

v1 = v4 (36)
v1 = v1 + v2sin(v−2)

This is called accumulation [6]. The calculation of all adjoints is as follows:

v4 = y = 1 (37)
(38)

y = v1 + v2 + v3 = 0
v3 = v4 = 1
v2 = v4 = 1
v1 = v4 = 1

(39)
v3 = v−2v

2
−3 = 0

v−2 = v3v
2
−3 = 9

v−3 = v32v−2v−3 = 0
(40)

v2 = v1sin(v−2) = 0
v1 = v1 + v2sin(v−2) = 1

v−2 = v−2 + v2v1cos(v−2) = 9
(41)

v1 = v−1v−2 = 0
v−2 = v−2 + v1v−1 = 11

v−1 = v1v−2 = 0

This is referred to as backward mode AD or adjoint mode AD. The amount
of computations is about 3 times higher if the gradient is calculated using for-
ward mode. For functions of the form f : Rn ⇒ R, forward mode derivation
takes O(np) computations. In reverse mode, it takes only O(p) computations.
Where n is the number of input variables and p is the number of trace variables.
The opposite is true if the function is of the form f : R ⇒ Rm. For general
functions F : Rn ⇒ Rm where a Jacobian is calculated, the two methods can
be combined. Doing it in the least amount of time referred to as the optimal Ja-
cobian accumulation problem [6]. Out of the 3 options discussed for computng
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the gradient of the numerical scheme, AD has the least memory and processing
demands. AD is an even more attractive option since eq. (15) contains one
output variable and N input variables, decreasing the computation time from
O(N2) to O(N) compared to numerical differentiation.

A program can be differentiated using AD by transforming the code au-
tomatically. The most obvious technique is source transformation where the
function is sent to a program that outputs the derivative of the function. This
method incurs the least overhead. Another method is operator overloading; in
this method, language features are used that allow the programmer to use the
same operation like + for different purposes depending on the types or classes
being manipulated.

The FADBAD++ header files that overload the double type in C++ where
included in an implementation of the ADI scheme using the Thomas algorithm
for solving systems with tridiagonal matrices [7]. Unfortunately the program
could not run due to a lack of memory. This issue could be resolved by having
a header file that had more AD types. The programmer would tell the compiler
what solution stategy to apply by using different AD types. This could yield a
program with less memeory requirements.

8 Adjoint mode AD of finite difference schemes

For one view, the sensitivity with respect to light intensity at a node and given
time step is as follows:

dφ

dUns
=
∑
r∈S

dφ

dUn+1
r

∂Un+1
r

∂Uns
+

∂φ

∂Uns
(42)

∂φ

∂Uns
= (Y ns − Uns ) if s ∈M and n ∈ T (43)

This means the light intensity depends on the sensitivity at the recording posi-
tions and on previous (or future values since a forward simulation is performed
beforehand) For all nodes:

dφ

dUn
=
[∂Un+1

∂Un
]T dφ

dUn+1
+

∂φ

∂Un
(44)

Differentiating the update rule:

∂Un+1

∂Un
= A−1B (45)

dφ

dUn
= BT (A−1)T

dφ

dUn+1
+

∂φ

∂Un
(46)

For the final sensitivity:

dφ

dθp
=
∑
n

∑
r∈S

dφ

dUnr

∂Unr
∂θp

(47)
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For all optical properties being optimized:

dφ

dθ
=
∑
n

[∂Un
∂θ

]T dφ

dUn
(48)

Differentiating the update rule:

dA

dθp
Un+1 +A

∂Un+1

∂θp
=
dB

dθp
Un (49)

∂Un+1

∂θp
= A−1

[ dB
dθp

Un − dA

dθp
Un+1

]
= A−1Xp (50)

∂Un+1

∂θ
= A−1[X1...XP ] = A−1X (51)

Where P is the total number of optical properties being optimized. In this
report only the cµa values are being optimized, therefore: P = N . The final
expression for the sensitivity is:

dφ

dθ
=
∑
n

XT (A−1)
dφ

dUn
(52)

This equation accumulates the contributions of eq. 46 with:

dφ

dUN
=

∂φ

∂UN
(53)

Where N is the last time step.

9 Conjugate gradient descent

The conjugate gradient method is one of the most effective methods for solving
large sparse matrix problems. Solving a linear system is equivalent to computing
the minimum of a quadratic from. It can be shown that conjugate gradient
descent is faster than steepest gradient descent in most cases. The above results
can be used to find the minimum for other nonlinear forms if their gradients
can be computed. The following definitions and derivations are based on [8].

9.1 Quadratic form

A quadratic form is the following:

f(x) =
1
2
xTAx− bTx + c (54)

xTAx > 0 for all x 6= 0 (55)

If A is square, symmetric and positive definite (condition (55)), f(x) is mini-
mized by the solution to the related matrix problem:

Ax = b (56)
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9.2 Steepest gradient descent

The residual is defined as the following:

r(i) = b−Ax(i) = A(x− x(i)) = −Ae(i) = −f ′(x(i)) (57)

To minimize f(x), we can move in the direction of the residual to a new point:

x(i+1) = x(i) + αr(i) (58)

Then rinse and repeat until a norm of the residual is below a certain tolerance,
usually chosen as a fraction of the same norm applied to the original residual:

||r(i)|| < ε||r(0)|| (59)

The value of α should be a value that minimizes along a line with direction
r(i) = −f ′(x(i)). A value where its derivative should be zero:

d

dα
f(x(i) + αr(i)) = 0 (60)

Using the chain rule:

d

dα
f(x(i+1)) = f ′(x(i+1))T

d

dα
x(i) = rT(i+1)r(i) (61)

And:

α =
rT(i)r(i)

rT(i)Ar(i)

(62)

What eq. 61 means is that steepest descent (SD), will be able to choose pre-
vious directions instead of always picking new ones. This makes the convergence
of the method much slower than conjugate gradient descent [8].

9.3 Conjugate gradient method

Conjugate gradient descent is derived by decomposing the solution into a basis
of vectors that are conjugate to one another. This increases the convergence
properties of the method compared to steepest descent [8].

10 MATLAB implementation

Adjoint differentiation using the implicit method and ADI was implemented in
MATLAB. A section of the code is shown below:

function dSdM = AD(numPs,delta,deltat,tmax,impulse,source,numSs,D,...
reorder,optMu_a,Yn)
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%GET Un
%Constants
numPs2 = numPs*numPs;
c = D*deltat/2/delta/delta;
%Solution matrix
Uzero = zeros(numPs2,1);

%What receivers are being used?
receivers = 1:numSs;
receivers(source) = [];
%Get source index (in natural ordering) and apply initial condition
sInd = getSourceInd(source);
Uzero(sInd) = impulse;
%Get receiver indices
rInd = getReceiverInd(receivers);

%Fill A
[Aw,Ap,Ae] = fillA(c,optMu_a,deltat,numPs);
%Fill B
[Bw,Bp,Be] = fillB(c,numPs);

%Run ADI scheme
tnum = 0;
while tnum < tmax

%First half time step: x implicit, y explicit
b = timesTri(Bw,Bp,Be, Uzero,numPs);
Uhalf = tdma(Aw,Ap,Ae, b);

%Store info
Un(:,tnum*2+1) = Uhalf;
%Reorder last solution
Uhalf = Uhalf(reorder);

%Second half time step: y implicit, x explicit
b = timesTri(Bw,Bp,Be, Uhalf,numPs);
Uzero = tdma(Aw,Ap,Ae, b);

%Store info
Un(:,tnum*2+2) = Uzero;
%Reorder obtained solution
Uzero(reorder) = Uzero;

%Increase timestep
tnum = tnum + 1;

end
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%GET delSdelU
numRs = numSs-1;
delSdelU = zeros(numPs2,tmax*2);
for n = 1:tmax

delSdelU(rInd,n*2) = Un(rInd,n*2) - Yn((1:numRs)’+(n-1)*numRs);
end

%GET dSdU
dSdU(:,tmax*2) = delSdelU(:,tmax*2);
for n = (tmax*2-1):-1:1

%Calculate derivative at previous time step
C = tdma(Ae,Ap,Aw, dSdU(:,n+1));
dSdU(:,n) = timesTri(Be,Bp,Bw, C,numPs) + delSdelU(:,n);
%Reorder last solution
if (mod(n,2) == 1)

dSdU(reorder,n) = dSdU(:,n);
else

dSdU(:,n) = dSdU(reorder,n);
end

end

%GET intPs
%These vector is used to determine if a diagonal point is in the interior
intPs = zeros(numPs2,1);
for j = 2:numPs-1

ind = (2:numPs-1)’ + (numPs-j)*numPs;
intPs(ind) = 1;

end

%GET dSdM
dSdM = zeros(numPs2,1);
for n = 1:tmax*2

%Get X for given timestep
X = diag(intPs.*(-deltat/2));
X = X.*repmat(Un(:,n),1,numPs2);

%Accumulate results
dSdM = dSdM + X’*tdma(Ae,Ap,Aw, dSdU(:,n));

end

The slowest part of the code is the multiplication of the X matrices. This
part of the code was optmized by multipling the components of X explicitly
with U . The only difference between this functionand the one that uses the
implicit scheme are the reordering steps and the derivative of A with respect to
the optical parameters.
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Figure 11: Phantom used to test convergence of SD and NCG schemes

11 Phantom and brain image reconstruction

The sensitivity and gradient calculations were included in a MATLAB function
and the MATLAB function was used in a steepest descent algrorithm and a
nonlinear conjugate gradient algorithm. The phantom used is the one shown
in Fig 11 . The following figures show the reconstruction of the phantom using
steepest descent and nonlinear conjugate gradient. For the nonlinear conjugate
gradient a function written by Carl Rasmussen was used. It can be found at:
http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/ The conju-
gate gradient method used in the function is Polak-Ribiere [8].

12 Regularization

Regularization can be applied in the gradient computation by adding a formula
of the following form to the sensitivity:

R = b
∑
|Ds −Dr|p (63)

This function penalizes high gradients in the solution. But this changes the value
of the solution. Therefore there are optimal values of b and p that minimize the
error between the obtained and actual solution. In [1] it is reported that a value
of p of 1.1 is better than a value of 2 in minimizing the difference between the
obtained and actual solutions.

13 Conclusion

The ADI scheme and adjoint differentiation allow the fastest optimization of
optical properties compared to other traditional methods. However, to get bet-
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Figure 12: Surface of reconstructed phantom after 80 function evaluations using
SD
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Figure 13: Contour plot of reconstructed phantom after 80 function evaluations
using SD
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Figure 15: Surface of reconstructed phantom after 80 function evaluations using
NCG
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Figure 16: Contour plot of reconstructed phantom after 80 function evaluations
using NCG
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Figure 18: Original low resolution brain image
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Figure 19: Reconstructed surface of low resolution brain image
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Figure 20: Reconstructed image of low resolution brain image

ter results with the GIIR method, more work should be done in optimization
and regularization before a reconstruction is attempted.
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